skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishnamurthy, Ramanarayanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cyanuric acid (CA), a triazine heterocycle, is extensively utilized for noncovalent self‐assembly. The association between poly(adenine) and CA into micron‐length fibers was a remarkable observation made by Sleiman and co‐workers, who proposed that adenine and CA adopt a hexameric rosette configuration in analogy with previously reported structures for CA assemblies. However, recent experimental observations from the Krishnamurthy group led to a reevaluation of the hexameric rosette model, wherein they have proposed a hydrogen‐bonded helicene model as an alternative. Our molecular dynamics simulations show that the hexad model is indeed unlikely and that this novel noncovalent helicene geometry, where the adenine and CA bases form an extended helical hydrogen‐bond network across the system, is a more probable structural motif. The existence of noncovalent helicene compounds may have wide‐ranging applications in DNA nanotechnology and helicene chemistry. 
    more » « less